skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foufoula-Georgiou, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel quantitative test of a 50‐year‐old hypothesis which asserts that river delta morphology is determined by the balance between river and marine influence. We define three metrics to capture the first‐order morphology of deltas (shoreline roughness, number of distributary channel mouths, and presence/absence of spits), and use a recently developed sediment flux framework to quantify the river‐marine influence. Through analysis of simulated and field deltas we quantitatively demonstrate the relationship between sediment flux balance and delta morphology and show that the flux balance accounts for at least 35% of the variance in the number of distributary channel mouths and 42% of the variance in the shoreline roughness for real‐world and simulated deltas. We identify a tipping point in the flux balance where wave influence halts distributary channel formation and show how this explains morphological transitions in real world deltas. 
    more » « less
  2. Abstract Observatory‐scale data collection efforts allow unprecedented opportunities for integrative, multidisciplinary investigations in large, complex watersheds, which can affect management decisions and policy. Through the National Science Foundation‐funded REACH (REsilience under Accelerated CHange) project, in collaboration with the Intensively Managed Landscapes‐Critical Zone Observatory, we have collected a series of multidisciplinary data sets throughout the Minnesota River Basin in south‐central Minnesota, USA, a 43,400‐km2tributary to the Upper Mississippi River. Postglacial incision within the Minnesota River valley created an erosional landscape highly responsive to hydrologic change, allowing for transdisciplinary research into the complex cascade of environmental changes that occur due to hydrology and land use alterations from intensive agricultural management and climate change. Data sets collected include water chemistry and biogeochemical data, geochemical fingerprinting of major sediment sources, high‐resolution monitoring of river bluff erosion, and repeat channel cross‐sectional and bathymetry data following major floods. The data collection efforts led to development of a series of integrative reduced complexity models that provide deeper insight into how water, sediment, and nutrients route and transform through a large channel network and respond to change. These models represent the culmination of efforts to integrate interdisciplinary data sets and science to gain new insights into watershed‐scale processes in order to advance management and decision making. The purpose of this paper is to present a synthesis of the data sets and models, disseminate them to the community for further research, and identify mechanisms used to expand the temporal and spatial extent of short‐term observatory‐scale data collection efforts. 
    more » « less